71 research outputs found

    The Feeling of Numbers: emotions in everyday engagements with data and their visualisation

    Get PDF
    This paper highlights the role that emotions play in engagements with data and their visualisation. To date, the relationship between data and emotions has rarely been noted, in part because data studies have not attended to everyday engagements with data. We draw on an empirical study to show a wide range of emotional engagements with diverse aspects of data and their visualisation, and so demonstrate the importance of emotions as vital components of making sense of data. We nuance the argument that regimes of datafication, in which numbers, metrics and statistics dominate, are characterised by a renewed faith in objectivity and rationality, arguing that in datafied times, it is not only numbers but also the feeling of numbers that is important. We build on the sociology of a) emotions and b) the everyday to do this, and in so doing, we contribute to the development of a sociology of data

    Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat

    Get PDF
    BACKGROUND: The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive Ca(2+) releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of Ca(L) channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca(2+) releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases to their control levels in cerebral and small mesenteric VSMCs, respectively. CONCLUSIONS: The differential regulation of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca(2+), which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance

    The Nanostructure of Myoendothelial Junctions Contributes to Signal Rectification between Endothelial and Vascular Smooth Muscle Cells

    Get PDF
    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross talk between the two cell layers is important in regulating blood pressure and flow. We have used a spatiotemporal mathematical model to investigate how the myoendothelial junctions affect the information flow between the two cell layers. The geometry of the model mimics the structure of the two cell types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca2+ and IP3 between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself may rectify a signal between the two cell layers. The rectification is caused by the asymmetrical structure of the myoendothelial junction. Because the head of the myoendothelial junction is separated from the cell it is attached to by a narrow neck region, a signal generated in the neighboring cell can easily drive a concentration change in the head of the myoendothelial protrusion. Subsequently the signal can be amplified in the head, and activate the entire cell. In contrast, a signal in the cell from which the myoendothelial junction originates will be attenuated and delayed in the neck region as it travels into the head of the myoendothelial junction and the neighboring cell

    Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels

    Get PDF
    Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically

    Nitric Oxide Mediates Stretch-Induced Ca2+ Release via Activation of Phosphatidylinositol 3-Kinase-Akt Pathway in Smooth Muscle

    Get PDF
    Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level.Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin
    corecore